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It is well established that rapidly propagating cracks in brittle material are unstable such that they generate
side branches. It is also known that cracks are attracted by free surfaces, which means that they attract each
other. This information is used here to formulate a generic model of fragmentation in which the small-size part
of the fragment-size distribution results from merged crack branches in the damage zones along the paths of the
propagating cracks. This model is solved under rather general assumptions for the fragment-size distribution.
The model leads to a generic distribution S−� exp�−S /S0� for fragment sizes S, where �= 2d−1

d with d the
Euclidean dimension, and S0 is a material dependent parameter.
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INTRODUCTION

One of the early attempts to describe fragment-size distri-
butions �FSDs� of explosive fragmentation goes back to the
1940s. Mott �1–3� experimented with fragmentation of thick
shells and compared the results with those of a one-
dimensional Poisson process and a two-dimensional random
construction of horizontal and vertical lines dividing the
plane into parts �4�. The latter model results in a cumulative
FSD �i.e., the relative number of fragments with size larger
than area S� of the form N�S���SK1��S�, where K1 is a
modified Bessel function. This form of N�S� is fairly close to
the simple FSD of a one-dimensional Poisson process,
N�S��exp�−�S� �5�.

In the same spirit, Grady and Kipp �5� considered several
different constructions of lines that divide a two-dimensional
�2D� plane into parts. The ones that are most realistic as
models of fragmentation do not allow lines to intersect.
These typically result in FSD’s close to that of a 2D Poisson
process, N�S��exp�−S� �notice the difference from the one-
dimensional �1D� Poisson-process result above�.

Another pair of classical papers on fragmentation are
those of Gilvarry �6� and Gilvarry and Bergstrom �7�. Gilva-
rry derived an FSD under the assumption that uncorrelated
flaws within the volume, on the surface, and along the edges
of existing fragments are activated in an uncorrelated fash-
ion. To fit the empirical Rossin-Rammler �8� and Gates-
Gaudin-Schuhmann �9–11� FSDs, and the experimental FSD
of Gilvarry and Bergstrom, he concluded that edge flaws
dominate flaw activation in explosive fragmentation. This
lead to an FSD for fragments of size between S and S+dS in
the form

n�S� � q�S�S−�d−1�/d exp�− S/S0�dS , �1�

where d is the Euclidean dimension, S0 relates to the fre-
quency of the Poisson process, and q�S� is the density of a
priori fragments of size S. For the last parameter Gilvarry
chose q�S�=V0 /S, where V0 is the volume of the initial ob-
ject.

Equation �1� provides excellent fits to numerous FSDs of
fragmentation experiments, but there are some unresolved
issues in the theory. In particular, it is not clear why the a

priori density of fragments is q�S�=V0 /S. Furthermore, in
the Gilvarry derivation, the cracks are assumed to form
smooth crack surfaces. Relatively recently it has been estab-
lished that rapidly propagating cracks �which is certainly the
case in explosive fragmentation� in brittle materials are not
stable, but crack branching and crack-tip splitting begin to
appear beyond a critical crack velocity �12�. Such instabili-
ties will destroy the smooth crack surface and small frag-
ments will be formed in damage zones along the paths of the
cracks. These small fragments will significantly affect the
FSD in the small fragment-size limit �13�, which makes the
validity of the Gilvarry theory doubtful.

More recently it has been proposed that the distribution of
distances between initiated crack branches may explain the
shape of FSDs in some cases. This distribution has been
found to have a log-normal shape �14,15�. An important in-
gredient missing in such a model is that cracks are attracted
by a free surface �e.g., a crack surface left behind by another
crack�. A crack propagating beside a free surface �e.g., an-
other crack� will turn toward this, and eventually merge with
it. The crack cannot penetrate beyond the free surface and
therefore it terminates there. As more of the crack branches
merge, a decreasing number of remaining crack branches
will form increasingly larger fragments as they propagate
further away from the mother crack, expanding the damage
zone around the crack. This process will continue until all
crack branches have merged or stopped as a result of stress
relaxation.

A numerical model based on this scenario was investi-
gated by Inaoka and Takayasu �16,17�. Their numerical
FSD’s were consistent with the Gilvarry result,

n�S� � S−� exp�− S/S0�dS �2�

with �= 3
2 and �= 5

3 in 2D and 3D, respectively. These results

indicate that �= 2d−1
d . In the cumulative FSD, N�S�, the

power-law exponent is thus �−1= d−1
d .

A number of fairly recent experiments have verified that
this exponent � describes the FSDs for a class of fragmenta-
tion processes in 2D �18� and three dimensions �3D�
�19–21�. A recent review on the topic is in Ref. �22�. A direct
experimental verification of fragment formation through
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crack-tip branching and merging of branches using a high-
speed camera, is given in Ref. �23�. The mechanism of merg-
ing crack branches is also consistent with the results of a
recently conducted experiment by Svahn �24�. In this experi-
ment concrete blocks were exploded such that three concen-
tric layers around the central blasting hole of the blocks were
colored differently. In this way the spatial origin of frag-
ments within the initial block could be identified with some
accuracy. One-half of the small fragments were formed in the
first layer around the hole and the other one-half in the two
outer layers. The outermost layers of the blocks were cleaved
into a few large fragments with small fragments produced
around the cleaving cracks. This behavior strongly supports
the formation of small fragments as a result of merging crack
branches, as opposed, e.g., to having them formed next to the
blasting hole only.

In this paper we use the experimental and numerical evi-
dence described above, and construct a model for the pro-
duction of small fragments in impact �or explosive� fragmen-
tation of brittle material, based on merging of crack branches
�daughter cracks� around an initial propagating crack. Under
rather general assumptions concerning distances between
branches, shape of the fragments formed, and probability of
the cracks to get arrested in the material, we theoretically
derive the resulting FSDs.

In the model introduced, angles between mother and
daughter cracks, and between merging cracks, were not
fixed, although tip splitting �12� and merger �25� typically
involve characteristic angles. In fact we demonstrate that
these angles do not affect the FSD. Notice that the merger
angles are in reality close to 90°, but this angle results from
a crack turning toward a neighboring free surface before
merger.

TOY MODEL IN TWO DIMENSIONS

Before more general cases are considered, we first inves-
tigate three simple examples of our model in which the shape
of the fragments is fixed. In the first case let the elementary
fragments, formed by the first side-branch-merger generation
closest to the mother crack, be isosceles triangles with base
�x and base angle � �Fig. 1�. Triangular blocks defined by
the baseline crack and a point of merger of two daughter
cracks are similar in all generations, and the size of a block
in generation k is given by

Bk =
1

4
�2k − 1���x�2 tan � . �3�

We can easily deduce from this result that the size of the new
fragment generated in a kth generation merger is

Ak =
1

8
�4k − 2���x�2 tan � . �4�

In the second example let the elementary fragments be
squares with edge �x �Fig. 2�. For the block sizes we find the
recursion relation �k is a generation index�

B1 = ��x�2, Bk+1 = 4Bk + ��x�2. �5�

The solution of this difference equation is

Bk =
1

3
�4k − 1���x�2, �6�

and the size of the fragments in generation k is now

Ak =
1

6
�4k + 2���x�2. �7�

In our third simple example the elementary fragments are
semicircles of diameter �x �Fig. 3�. In this case the block
sizes satisfy the recursion relation

B1 =
�

8
��x�2,

Bk+1 = 4Bk + �2k−1 +
�

8
−

1

2
���x�2. �8�

This difference equation can be easily solved and we find

Ak = �2 + �

48
4k +

2� − 8

48
���x�2 �9�

for the size of the kth-generation fragments.
If the number of the elementary crack branches is 2N, then

in all these three cases the number of the kth generation
fragments is Nk=2N−k, and for large k we get a power law

Nk � �Ak�−1/2. �10�

This power law follows from the fact that fragments are es-
sentially similar in different generations, and the linear di-
mensions of the fragments are doubled in each step while
their number is halved.

FIG. 1. 2D crack-branching model with triangular fragments. A
third generation block is shown shaded.

FIG. 2. 2D crack-branching pattern of squares.

FIG. 3. 2D crack-branching model with semicircular
fragments.
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All branches do not necessarily form fragments, and may
stop spontaneously before reaching a free surface. Assume
that in the first generation each fragment is formed with
probability p. In the kth generation, assume that a fragment
is formed with the same probability p, if all the possible
fragments in the preceding generations of the same block
exist. Now the number of fragments formed in generation k
is binomially distributed,

Nk � bin�p2k−1,2N−k� , �11�

and the expectation value of Nk obeys a power law with
exponential cutoff,

	Nk
 � �Ak�−1/2 exp� C

�x
�Ak�1/2 ln p� , �12�

where constant C depends on the shape of fragments.

GENERALIZATION OF THE TOY MODEL

Consider again the triangle-fragment model, but now in
the case where the fragments of any given generation can
have different sizes �Fig. 4�. Denote by �xi, i=1, . . . ,2N−1,
distances between the first-generation �elementary� daughter
cracks. The block sizes in the kth generation are

Bk
j =

1

4� �
i=�j−1�2k+1

j2k−1

�xi�2

tan �, j = 1, . . . ,2N−k. �13�

The fragment sizes in generation k satisfy the recursion rela-
tion

A1
j = B1

j , j = 1, . . . ,2N−1,

Ak+1
j = Bk+1

j − �Bk
2j−1 + Bk

2j�, j = 1, . . . ,2N−k−1. �14�

Assume now that distances �xi between elementary daughter
cracks are independent and identically distributed with the
expectation value and variance

	�xi
 = �x, �2��xi� = �2. �15�

For the expectation values of block and fragment sizes,
respectively, we now find

Bk ª 	Bk
j
 =

1

4
	� �xi
2

tan �

=
1

4
���x�24k + ��2 − 2��x�2�2k + ��x�2 − �2 tan �

�16�

and

Ak ª 	Ak
j
 = Bk − 2Bk−1 =

1

8
tan ����x�24k + �2 − 2��x�2� .

�17�

We can modify the square-fragment model in an analo-
gous way �Fig. 5�. In order to have well-defined fragment
generations, we must assume that the horizontal distance be-
tween the midpoints of the top edges of neighboring frag-
ments is larger than the height of these fragments. This con-
dition holds if we assume that a��xi�3a for some a	0.
In this case the block sizes satisfy the recursion relation

B1
j = ��xj�2, j = 1, . . . ,2N−1,

4k�Bk+1
j −

1

2
Bk

2j+1 −
1

2
Bk

2j−1�
= ��

i=1

2k

i�xi+�j−1�2k+1 + �
i=1

2k−1

i�xj2k+1−i�2

,

j = 1, . . . ,2N−k−1. �18�

Assume again that the �xi’s are independent and identically
distributed such that a��xi�3a, and

	�xi
 = �x, �2��xi� = �2.

For the expectation values of the block sizes, Bk= 	Bk
j
, we

obtain

B1 = ��x�2 + �2,

4k�Bk+1 − Bk� = ��x�2 +
4−k

3
�2k+1 + 2−k��2. �19�

In the same way as in the previous case we find

Ak =
1

6
��x�24k +

1

3
��x�2 + 21−k�2 �20�

for the expectation values of the fragment sizes, Ak= 	Ak
j
. In

both these generalized cases we again obtain a power-law
dependence between the number and average size of frag-
ments in generation k,

Nk � �Ak�−1/2.

Furthermore, if each fragment in the first generation is
formed with probability p, and in the kth generation a frag-
ment is formed with the same probability p if all fragments

FIG. 4. 2D crack-branching model with triangular fragments of
varying size.

FIG. 5. 2D crack-branching model with square fragments of
varying size.
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of the preceding generations in the same block exist, then the
expectation value of Nk obeys a power law with an exponen-
tial cutoff,

	Nk
 � �Ak�−1/2 exp� C

�x
�Ak�1/2 ln p� ,

where constant C depends on the shape of fragments.
We can also obtain the power-law expression for 	Nk
 in a

more general case. Assume that blocks are essentially simi-
lar, i.e., the area of a block can be written in the form

Bk
j = ��lk

j�2 + 
k
j , �21�

where lk
j is a �weighted� sum of the �xi’s that belong to block

Bk
j , � is a constant, and 
k

j is a small correction that depends
on the shape of the block. If the �xi’s are independent and
identically distributed with

	�xi
 = �x, �2��xi� = �2,

then the expectation value of the block size can be expressed
in the form

Bk = ���x�24k + �k, �22�

where �k depends on �x and � and possibly also on higher
moments of �xi. Now the expectation value of the fragment
size is given by

Ak =
1

2
���x�24k + ��k − �k−1� . �23�

If the second term on the right-hand side of this equation is
small compared to the first one, we get a similar power-law
distribution as before. This generalization allows for frag-
ments of varying size and varying shape.

CONTINUUM LIMIT

Consider next the toy models in the limits �x→0 and
infinite size of the system. Let the length of the system be
L=N� and �x=L /2N. Consider the total area per unit length
of fragments with size less than A,

1

L
�

k:Ak�A

NkAk. �24�

The size of fragments in generation k was �cf. Eqs. �4� and
�9��

Ak = c��x�24k + �k��x�2, �25�

where �k�4k for large k. If we approximate this expression
by letting

�k

4k →0, we find that Ak�A when

k � log4� A

c�2� + N − log4 N2
¬ kA. �26�

Now we can compute the sum in Eq. �24�,

1

L
�

k:Ak�A

NkAk =
1

N�
�
k=1

kA

c�22N−kN2

4N�4k +
�k

c
�

= c � N�
k=1

kA

2k−N + �
N

2N�
k=1

kA

�k2
−k

= 2c � �� A

c�2 −
N

2N� + �
N

2N�
k=1

kA

�k2
−k.

�27�

If
�k

4k →0 such that

�
k=1

N

�k2
−k = o�2N

N
� , �28�

we find in the limit N→ that

1

L
�

k:Ak�A

NkAk → 2c �� A

c�2 . �29�

On the other hand, in this limit the sum equals

�
0

A

AdN�A� , �30�

where N�A� is the number of fragments �per unit length�.
This means that we obtain a power-law expression for the
density of fragments,

n�A� =
dN�A�

dA
=

1

c�3� A

c�2�−3/2

. �31�

If we assume that cracks propagate with a constant speed,
then the area production rate of the fragments is constant.

Consider the case when fragments are formed with prob-
ability p as described above. In the limit N→ we must also
scale the probability p, and for this we use the scaling

p → pN = p�x/� = pN/2N
. �32�

Consider now the expectation value of total area per unit
length of fragments with size less than A,

1

L� �
k:Ak�A

NkAk� =
1

N�
�

k:Ak�A

	Nk
Ak

=
1

N�
�
k=1

kA

2N−kpN
2k−1�c�2N2

4N �4k + �k��
=

c�

pN
�
k=1

kA

2k−NNpN2k−N
+

N�

2N �
k=1

kA

�k2
−kpN

2k−1.

�33�

The last sum on the right-hand side vanishes in the limit N

→ if
�k

4k →0 fast enough. The first sum on the right-hand
side can be written as a Riemannian lower sum, and we get
an expression

KEKÄLÄINEN, ÅSTRÖM, AND TIMONEN PHYSICAL REVIEW E 76, 026112 �2007�

026112-4



�
k=1

kA

2k−NNpN2k−N
= 2�

k=1

kA

�2k−NN − 2k−1−NN�pN2k−N

� 2�
0

�A/c�2

pxdx

=
1

c�2�
0

A � y

c�2�−1/2

exp�ln p� y

c�2�dy .

�34�

In the same way we get a lower bound for the same sum in
the form

�
k=1

kA

2k−NNpN2k−N
�

1

2c�2�
0

A � y

c�2�−1/2

exp�ln p� y

c�2�dy .

�35�

In the limit N→ we thus find that

1

L� �
k:Ak�A

NkAk� �
1

�
�

0

A � y

c�2�−1/2

exp�ln p� y

c�2�dy ,

�36�

which means that the density of fragments is a power law
with exponential cutoff,

n�A� =
dN�A�

dA
�

1

�3� A

c�2�−3/2

exp�ln p� A

c�2� . �37�

The area production rate slows down as exp�C �ln p�t�, as-
suming that cracks propagate with a constant speed. The total
area of the fragments is proportional to −1/ ln p.

We can generalize this result to the case where distances
between the first-generation side branches vary. The expec-
tation value of fragment size is of the same form as that in
the toy models,

Ak = c��x�24k + �k, �38�

where �k depends on �x and � and possibly on higher mo-
ments of �xi, and is small compared to the first term. If the
number of first-generation fragments is large and the distri-
bution of �xi is narrow, then distributions of fragments in
different generations do not overlap much, and we can ap-
proximate the expectation value of the total area per unit
length of fragments with size less than A in the same way as
before by summing over the generations with expected size
Ak�A,

� 1

L
�

k,j:Ak
j�A

Ak
j� �

1

	L
 �
k:Ak�A

	Nk
Ak. �39�

If we now take the limit N→ such that 	�xi
= N

2N �, we get
a result similar to that of Eq. �37� for the density of
fragments.

THREE-DIMENSIONAL CASES

In analogy with the toy model of triangular fragments, we
can construct a three-dimensional model with pyramid

�elementary� fragments of a square base. The idea of the
model is shown in Fig. 6, where blocks of three consecutive
generations are drawn. Blocks are similar pyramids and the
volume of a block in the kth generation is given by

Bk =
1

6
��2k − 1��x�3 tan � , �40�

where � is the angle between the base and a side of the
block, and �x is the length of a base edge of the first-
generation fragments. For the volume of fragments in gen-
eration k we find

Vk =
1

12
8k�1 − �1

4
�k

+ 3�1

8
�k� tan � . �41�

The model of square fragments can also be generalized into
three dimensions with cubic elementary fragments. Figure 7
shows blocks in three consecutive generations. For block
sizes we get the recursion relation

B1 = ��x�3, Bk+1 = 8Bk + �2k+1 − 1���x�3, �42�

from which we find that

Bk = � 4

21
8k −

1

3
2k −

1

7
���x�3, �43�

and further for the volume of fragments in generation k,

Vk = � 2

21
8k +

1

3
2k − 9���x�3. �44�

If the number of elementary cracks is 2N in both directions,
then the number of fragments in generation k is

FIG. 6. 3D model of crack-branching fragmentation with
pyramid-shaped elementary fragments. Blocks in three consecutive
generations are shown.

FIG. 7. 3D model of crack-branching fragmentation with cubic
elementary fragments. Blocks in three consecutive generations are
shown.
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Nk = �2N−k�2, �45�

which means that

Nk � �Vk�−2/3. �46�

We can now take a continuum limit in the same way as in the
two-dimensional case above, and find thereby for the density
of fragments

n�V� =
dN�V�

dV
�

1

�5� V

c�3�−5/3

. �47�

If we again assume that each fragment in the first genera-
tion is formed with probability p, and in the kth generation a
fragment is formed with the same probability p if all the
possible fragments of lower generations in the same block
exist, then the number of fragments is binomially distributed,

Nk � bin�p�4k−1�/3,4N−k� . �48�

For the expectation value of the number of fragments we find
again a power law with exponential cutoff,

	Nk
 � �Vk�−2/3 exp� C

��x�2 �Vk�2/3 ln p� , �49�

where the constant C depends on the shape of the fragments.
If we take a continuum limit with the scaling p→pN

= p�N/2N�2
, we find

n�V� =
dN�V�

dV
�

1

�5� V

c�3�−5/3

exp�1

3
ln p� V

c�3�2/3�
�50�

for the density of fragments.

GENERIC MODEL OF CRACK-BRANCHING
FRAGMENTATION

The models we introduced above can be expressed as
regular Cayley trees as shown in Fig. 8. Vertices correspond
to fragments and links describe how they form blocks. In the
two-dimensional case every vertex in the kth generation has
two parents and in the three-dimensional case there are four
parents. The fragment sizes satisfy recursion relations of the
form �generation number increases with increasing distance
from the bottom line in Fig. 8�

Ak+1

Ak
= 4 + �k,

Vk+1

Vk
= 8 + �k, �51�

where �k is a small correction.

Consider a Cayley tree in which every vertex in the kth
generation has n daughters. If the vertex sizes satisfy the
recursion relation

Sk+1

Sk
= � + �k �52�

with �k’s small enough, then

Sk � C�k �53�

for large k. If the number of vertices in the first generation is
nN, then the number of vertices in the kth generation is Nk
=nN−k+1, and we find that

Nk � �Sk�−�, � =
ln n

ln �
. �54�

Assume now that we remove a vertex in the first generation
with probability p, and in the kth generation we remove a
vertex with probability p if all the vertices in the same
Caley-tree branch below it have been removed. The number
of vertices removed in generation k is binomially distributed,

Nk � bin�p�nk−1�/�n−1�,nN−k+1� , �55�

and the expectation value of the number of fragments is a
power law with exponential cutoff,

	Nk
 � �Sk�−� exp�c�Sk�� ln p� . �56�

In dimensions d=2 and d=3 we find the familiar scaling
exponents �= d−1

d . Within the Caley-tree model we can gen-
eralize the system into d dimensions in an analogous way. If
the fragments are essentially similar and the linear dimension
of fragments is doubled in each generation, the fragment
sizes satisfy the recursion relation

Sk+1

Sk
= 2d + �k. �57�

We thus find that �=2d in the Caley-tree model �cf. Eq.
�52��. The base of the fragmentation pattern is a �d−1�-di-
mensional square which is divided into subsquares by 2N�d−1�

elementary cracks. In each direction two elementary cracks
meet to form secondary cracks in all generations. For the
number of fragments we find Nk /Nk+1=2d−1. This means that
n=2d−1, and we find in d dimensions that

Nk � �Sk�−� �58�

and

	Nk
 � �Sk�−� exp�c�Sk�� ln p� �59�

with �= d−1
d . If we take a continuum limit in the same way as

above, we find for the density of fragments

n�S� �
1

�2d−1� S

�d�−�2d−1�/d

�60�

and

two-dimensional case three-dimensional case

FIG. 8. Cayley-tree representation of the 2D and 3D models of
crack-branching fragmentation.
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n�S� �
1

�2d−1� S

�d�−�2d−1�/d

exp�C� S

�d��d−1�/d

ln p� ,

�61�

if we allow stopping of side branches with probability p.

SUMMARY AND DISCUSSION

We have demonstrated that a generic geometrical model
of fragmentation by merging side branches has a solution
that is consistent with the FSD of the classical Gilvarry
model and the FSD’s typically found in blasting experiments.
The model is inherently scale invariant and the resulting FSD

has a scaling exponent �=− 2d−1
d . For large fragments the

FSD may have an exponential cutoff, which results from
spontaneous stopping of side branches �i.e., fragments are
formed with a constant probability p�.

It is important to notice that the model presented here
only considers the small-fragment region of the FSD. It is
possible that also the main cracks �i.e., the mother cracks of
the side branches� merge with each other, and form thereby
the large-fragment part of the FSD. For more or less uncor-
related main cracks, one would expect that FSD has in the
large-fragment limit an �almost� exponential form. The exact
functional form of FSD may thus depend on, e.g., the load-
ing conditions of the object, and the large-size end of FSD is
therefore not as generic as its small-size end.
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